

Semester :VII

DEPARTMENT OF MATHEMATICS

Integrated M.Sc. Mathematics Academic Year : 2019 -20 Subject :060090704Advance Partial Differential Equation

<u>Teaching Schedule</u>

Course Objectives: To get knowledge of key concepts in advanced partial differential equations, e.g., some physical problems in engineering, Wave equation, Laplace equation, diffusion equation and real world problems that results in partial differential equations and able to solve problems by using of Separation of variable method, Green's function.

Course outcomes: Upon completion of the course, students shall be able to

CO1: classify partial differential equations (PDEs), convert in canonical form and apply an appropriate transformation technique to derive solution.

CO2: understand the derivation of laplace PDE.

CO3: get solutions of laplace equation using various analytical approaches.

CO4: formulate and solve one dimensional wave equation using different methods.

CO5: understand the fundamentals of green's function and its application to solve various one dimensional PDEs.

CO6: construct one dimensional PDEs for respective conditional problem and resolved it by various analytical methods.

Unit	Sub Unit	No. of Lect.(s)	Topics	Reference Chapter/ Additional Reading	Teaching Methodology to be used	Active Learning Activities	Evaluation Parameter			
Unit 1	Unit 1: Introduction to Second order Partial Differential Equations									
	1.1	1	Origin of second order partial differential equations	Ch#8 Ordinary and Partial Differential EquationsDr. M.D. Raisinghania		For Slow Learner: Students must write answer of question(s) given by teacher after completion of each method and verified by teacher to resolve any query of students.	Unit Test -1			
	1.2	1	Classification of second order partial differential equations		Chalk & Talk		Assignment-1			
[15]	1.3	2	Monge's method for partial differential equations of second order							
	1.4	2	Cauchy's problem for second order partial differential equations			For Active Learner: Student will solve exercise given in				
	1.5	2 Characteristic equations of second order partial differential				book after completion of Unit.				

DEPARTMENT OF MATHEMATICS

Integrated M.Sc. Mathematics Academic Year : 2019 - 20 Semester :VII Subject :060090704Advance Partial Differential Equation equation Rules for Finding C.I and P.I. 1.6 2 **Unit 2: Laplace Equation** [15] Mean value property For Slow Learner: 2.1 2 2.2 1 Weak and strong maximum Students must write answer of question(s) given by teacher after principle Ch#3 Poisson's formula 2.3 3 completion of each method and Ordinary and Partial Unit Test -1 Chalk & Talk verified by teacher to resolve any Dirichlet's principle 2.4 3 Differential and 2 query of students. 3 Existence of solution using 2.5 EquationsDr. M.D. Assignment-2 Perron's method (without proof) Raisinghania For Active Learner: Solutions by method of 2.6 3 Student will solve exercise given in separation of variables. book after completion of Unit. **Unit 3: Wave Equations** One dimensional wave equation For Slow Learner: [15] 3.1 3 3.2 4 D'Alembert's method Students must write answer of 3.3 3 Method of spherical means question(s) given by teacher after Ch#4 completion of each method and Duhamel's principle 3.4 4 Ordinary and Partial verified by teacher to resolve any Unit Test -2 3 solutions by method of separation 3.5 Differential Chalk & Talk query of students. Assignment-3 of variables EquationsDr. M.D. Raisinghania For Active Learner: Student will solve exercise given in book after completion of Unit. **Unit 4: Green's Function** Introduction of Green's function [15] 4.1 2 For Slow Learner: 2 Students must write answer of 4.2 Green's function for laplace equation question(s) given by teacher after Internal 2 The eigen function method 4.3 completion of each method and Ch#5, CH#10 Examination verified by teacher to resolve any 2 **Ordinary and Partial** Assignment-4 4.4 Green's function for wave equation – Helmholtz theorem Differential Chalk & Talk query of students. EquationsDr. M.D. 2 4.5 Green's function for diffusion

DEPARTMENT OF MATHEMATICS

Semester :VII		Integrated M.Sc. Mathematics					
Subject :060090704Advance Partial Differential Equation							
	equation	Raisinghania	For Active Learner:				
			Student will solve exercise given in				
			book after completion of Unit.				

Text book:

1. Dr. M.D. Raisinghania: Ordinary and Partial Differential Equations, S. Chand & Company PVT.LTD, 2008.

Reference book:

1. Amaranath: An Elementary Course in Partial Differential Equations, Wiley Eastern Ltd., New Delhi, 1975.

Course Objectives and Course Outcomes Mapping:

- Understand the fundamentals concepts of PDEs: CO1, CO2,CO6
- To become familiar with problem solving techniques: CO3, CO4, CO5

Course Units and Course Outcomes Mapping:

Unit No.	Unit	Course Outcomes					
		CO1	CO2	CO3	CO4	CO5	CO6
1	Introduction to second order partial differential equations	\checkmark	\checkmark				\checkmark
2	Laplace equation		\checkmark	\checkmark			\checkmark
3	Wave equations				\checkmark		\checkmark
4	Green's function					\checkmark	\checkmark

Programme Outcomes (PO)

PO1: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

PO3: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

DEPARTMENT OF MATHEMATICS

Semester :VII

Integrated M.Sc. Mathematics Subject :060090704Advance Partial Differential Equation Academic Year : 2019 -20

PO4: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Programme Outcomes and Course Outcomes mapping:

Programme Outcomes	Course Outcomes						
	CO1	CO2	CO3	CO4	CO5	CO6	
P01	\checkmark		\checkmark		\checkmark	\checkmark	
PO2		✓		✓		✓	
P03			\checkmark	\checkmark	\checkmark	\checkmark	
P04					\checkmark		

